[ | E-mail | Share ]
Contact: George Hunka
ghunka@aftau.org
212-742-9070
American Friends of Tel Aviv University
Glia cells also regulate learning and memory, new Tel Aviv University research finds
Glia cells, named for the Greek word for "glue," hold the brain's neurons together and protect the cells that determine our thoughts and behaviors, but scientists have long puzzled over their prominence in the activities of the brain dedicated to learning and memory. Now Tel Aviv University researchers say that glia cells are central to the brain's plasticity how the brain adapts, learns, and stores information.
According to Ph.D. student Maurizio De Pitt of TAU's Schools of Physics and Astronomy and Electrical Engineering, glia cells do much more than hold the brain together. A mechanism within the glia cells also sorts information for learning purposes, De Pitt says. "Glia cells are like the brain's supervisors. By regulating the synapses, they control the transfer of information between neurons, affecting how the brain processes information and learns."
De Pitt's research, led by his TAU supervisor Prof. Eshel Ben-Jacob, along with Vladislav Volman of The Salk Institute and the University of California at San Diego and Hugues Berry of the Universit de Lyon in France, has developed the first computer model that incorporates the influence of glia cells on synaptic information transfer. Detailed in the journal PLoS Computational Biology, the model can also be implemented in technologies based on brain networks such as microchips and computer software, Prof. Ben-Jacob says, and aid in research on brain disorders such as Alzheimer's disease and epilepsy.
Regulating the brain's "social network"
The brain is constituted of two main types of cells: neurons and glia. Neurons fire off signals that dictate how we think and behave, using synapses to pass along the message from one neuron to another, explains De Pitt. Scientists theorize that memory and learning are dictated by synaptic activity because they are "plastic," with the ability to adapt to different stimuli.
But Ben-Jacob and colleagues suspected that glia cells were even more central to how the brain works. Glia cells are abundant in the brain's hippocampus and the cortex, the two parts of the brain that have the most control over the brain's ability to process information, learn and memorize. In fact, for every neuron cell, there are two to five glia cells. Taking into account previous experimental data, the researchers were able to build a model that could resolve the puzzle.
The brain is like a social network, says Prof. Ben-Jacob. Messages may originate with the neurons, which use the synapses as their delivery system, but the glia serve as an overall moderator, regulating which messages are sent on and when. These cells can either prompt the transfer of information, or slow activity if the synapses are becoming overactive. This makes the glia cells the guardians of our learning and memory processes, he notes, orchestrating the transmission of information for optimal brain function.
New brain-inspired technologies and therapies
The team's findings could have important implications for a number of brain disorders. Almost all neurodegenerative diseases are glia-related pathologies, Prof. Ben-Jacob notes. In epileptic seizures, for example, the neurons' activity at one brain location propagates and overtakes the normal activity at other locations. This can happen when the glia cells fail to properly regulate synaptic transmission. Alternatively, when brain activity is low, glia cells boost transmissions of information, keeping the connections between neurons "alive."
The model provides a "new view" of how the brain functions. While the study was in press, two experimental works appeared that supported the model's predictions. "A growing number of scientists are starting to recognize the fact that you need the glia to perform tasks that neurons alone can't accomplish in an efficient way," says De Pitt. The model will provide a new tool to begin revising the theories of computational neuroscience and lead to more realistic brain-inspired algorithms and microchips, which are designed to mimic neuronal networks.
###
American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading, most comprehensive and most sought-after center of higher learning. Independently ranked 94th among the world's top universities for the impact of its research, TAU's innovations and discoveries are cited more often by the global scientific community than all but 10 other universities.
Internationally recognized for the scope and groundbreaking nature of its research and scholarship, Tel Aviv University consistently produces work with profound implications for the future.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
[ | E-mail | Share ]
Contact: George Hunka
ghunka@aftau.org
212-742-9070
American Friends of Tel Aviv University
Glia cells also regulate learning and memory, new Tel Aviv University research finds
Glia cells, named for the Greek word for "glue," hold the brain's neurons together and protect the cells that determine our thoughts and behaviors, but scientists have long puzzled over their prominence in the activities of the brain dedicated to learning and memory. Now Tel Aviv University researchers say that glia cells are central to the brain's plasticity how the brain adapts, learns, and stores information.
According to Ph.D. student Maurizio De Pitt of TAU's Schools of Physics and Astronomy and Electrical Engineering, glia cells do much more than hold the brain together. A mechanism within the glia cells also sorts information for learning purposes, De Pitt says. "Glia cells are like the brain's supervisors. By regulating the synapses, they control the transfer of information between neurons, affecting how the brain processes information and learns."
De Pitt's research, led by his TAU supervisor Prof. Eshel Ben-Jacob, along with Vladislav Volman of The Salk Institute and the University of California at San Diego and Hugues Berry of the Universit de Lyon in France, has developed the first computer model that incorporates the influence of glia cells on synaptic information transfer. Detailed in the journal PLoS Computational Biology, the model can also be implemented in technologies based on brain networks such as microchips and computer software, Prof. Ben-Jacob says, and aid in research on brain disorders such as Alzheimer's disease and epilepsy.
Regulating the brain's "social network"
The brain is constituted of two main types of cells: neurons and glia. Neurons fire off signals that dictate how we think and behave, using synapses to pass along the message from one neuron to another, explains De Pitt. Scientists theorize that memory and learning are dictated by synaptic activity because they are "plastic," with the ability to adapt to different stimuli.
But Ben-Jacob and colleagues suspected that glia cells were even more central to how the brain works. Glia cells are abundant in the brain's hippocampus and the cortex, the two parts of the brain that have the most control over the brain's ability to process information, learn and memorize. In fact, for every neuron cell, there are two to five glia cells. Taking into account previous experimental data, the researchers were able to build a model that could resolve the puzzle.
The brain is like a social network, says Prof. Ben-Jacob. Messages may originate with the neurons, which use the synapses as their delivery system, but the glia serve as an overall moderator, regulating which messages are sent on and when. These cells can either prompt the transfer of information, or slow activity if the synapses are becoming overactive. This makes the glia cells the guardians of our learning and memory processes, he notes, orchestrating the transmission of information for optimal brain function.
New brain-inspired technologies and therapies
The team's findings could have important implications for a number of brain disorders. Almost all neurodegenerative diseases are glia-related pathologies, Prof. Ben-Jacob notes. In epileptic seizures, for example, the neurons' activity at one brain location propagates and overtakes the normal activity at other locations. This can happen when the glia cells fail to properly regulate synaptic transmission. Alternatively, when brain activity is low, glia cells boost transmissions of information, keeping the connections between neurons "alive."
The model provides a "new view" of how the brain functions. While the study was in press, two experimental works appeared that supported the model's predictions. "A growing number of scientists are starting to recognize the fact that you need the glia to perform tasks that neurons alone can't accomplish in an efficient way," says De Pitt. The model will provide a new tool to begin revising the theories of computational neuroscience and lead to more realistic brain-inspired algorithms and microchips, which are designed to mimic neuronal networks.
###
American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading, most comprehensive and most sought-after center of higher learning. Independently ranked 94th among the world's top universities for the impact of its research, TAU's innovations and discoveries are cited more often by the global scientific community than all but 10 other universities.
Internationally recognized for the scope and groundbreaking nature of its research and scholarship, Tel Aviv University consistently produces work with profound implications for the future.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Source: http://www.eurekalert.org/pub_releases/2011-12/afot-bcc122911.php
ron paul 2012 zynga stock zynga stock sam houston state university sam houston state university bradley manning whoopi goldberg
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.